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On large scale forest fires propagation models

O. Séro-Guillaume a,∗, S. Ramezani a, J. Margerit c, D. Calogine b

a LEMTA, 2, Avenue de la Forêt de Haye, 54504 Vandoeuvre, France
b Université de La Réunion, Laboratoire Génie Industriel – EGCTH 15, Avenue René Cassin St Clotilde, 97490 Saint-Denis, France

c Université de Liège, Institut de Physique B5a, Allée du 6 Août 17, B-4000 Liège, Belgium

Received 11 January 2007; received in revised form 7 May 2007; accepted 17 June 2007

Available online 1 August 2007

Abstract

The question of the modeling of forest fires at large scales is addressed. Empirical models are compared and it is shown that Rothermel’s
model describing the rate of spread of a straight front is included in the envelope model which in turn is included in a Hamilton–Jacobi equation
description. This result shows that the preceding models could be included in reaction diffusion systems. Then an anisotropic propagation model
with a nonlocal radiative term, obtained by asymptotic expansion of a combustion modeling, is proposed. This modeling takes into account the
effects of wind and slope and it is shown that this type of modeling is the simplest generalization of the empirical ones.
© 2007 Published by Elsevier Masson SAS.
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1. Introduction

Ignition and propagation of forest fires are complex phenom-
ena involving several scales whose ranges go from micrometer
to several kilometres. Actually, a unique model aiming at de-
scribing the fire at all the involved scales is probably not rele-
vant for all the purposes of being a “propagation model”, i.e.,
describing the propagation of the fire, and out of computational
ability of computers for reasonable simulation time. So the ex-
isting propagation models must be classified by the scales they
are supposed to describe and the corresponding purposes they
are designed for. In order to precise with no ambiguity this
classification, let us recall the different scales involved in the
description of a forest fire. We will use the scales nomenclature
of Séro-Guillaume and Margerit [1].

The smallest scale is the “microscopic scale”. At this scale,
the wood, which is the solid fuel, is a porous medium. It is
composed of three phases: a solid phase, a liquid phase, and
a gaseous phase. The main physical effects involved at this
scale are the pyrolysis and the vaporization (or the drying) of
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the wood. The second considered scale is the so-called “meso-
scopic scale”. At this scale, all the elements of vegetation (nee-
dles, twigs, branches, leaves . . . ) and the air around them form
a porous medium. There is an air flow and a wood outflow of
combustible gas inside the pores. The geometry of the vegeta-
tion in the elementary cell plays a prominent part in the energy
and momentum exchanges. In order to avoid geometrical com-
plexity of description, we can consider a larger scale related to
the typical size of the vegetation or height of the flames. At this
scale, that we call “macroscopic scale”, forest fuel is consid-
ered as a locally homogeneous medium composed of vegetal
and gaseous constituents. Finally, if we consider a developed
fire, the range of the fire size is several hundred meters to sev-
eral kilometers. At this scale, that we could call “gigascopic
scale”, the fire interacts with the topography and the wind, the
vegetation appears as a boundary layer, and the fire front is a
one-dimensional line moving along a two-dimensional surface.

Corresponding to the different scales cited above, we can
consider different types of models. At microscopic level, i.e.,
inside the solid fuel, the flow is driven by Darcy’s law. A model
at this scale is a “thermal degradation model” for a porous fuel,
see Di Blasi [2] for example for such a modelling. The meso-
scopic scale is not a relevant scale for obtaining a propagation
model, because the corresponding model contains the thermal
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degradation model cited above for the solid fuel and the usual
balance equations for reactive media for the gaseous phase.
This mesoscopic model can nevertheless be upscaled in order
to obtain, at macroscopic scale, the combustion equations of an
equivalent homogenised medium. One can speak of a “combus-
tion model” at this scale. Such an upscaling has been derived by
thermodynamics arguments in [1], and the same type of equa-
tions was given previously in Grishin [3] and Linn [4]. The
pioneering works in this direction were achieved by Albini [5,
6], a combustion model and interesting 2D simulations are pro-
vided in Porterie et al. [7]. The simulations of the propagation
of a developed fire of 1 km fire front length, with such a model,
require the solving of the balance equations for mass, momen-
tum, and energy for both gas and fuel phases and of the radiative
transfer equation on a grid of 1000×1000×50 = 50×106 cells
(of typical size 1 m) at least, which is computationally cumber-
some. It is then necessary to derive, eventually from the above
combustion model, a simplified model that is a “propagation
model” per se, i.e., a model that is supposed to give the fire line
position for real time uses.

A premixed combustion model, where, within the context of
ZFK model (Majda [8]), the combustion equations reduced to
a reaction diffusion system, with one equation for the energy
balance and one equation for the mass fraction of fuel, is an
example of a possible simplified model. The three-dimensional
energy equation in the temperature T has the following form:

∂T

∂t
+ v(x, t) · ∇T = εκ�T + ε−1f (T ) (1)

with v(x, t) the gas velocity at position x and time t , κ the
thermal diffusivity, f (T ) the heat source coming from the fuel
combustion, and ε = lF /L is the ratio of the flame front thick-
ness to the typical length scale of the air velocity fields. In
Eq. (1), the fuel mass fraction is assumed to be constant and
the velocity field v is assumed to be known for the sake of sim-
plicity.

Finally, as the relevant scale for the study of forest fire prop-
agation is the gigascopic scale, if one considers that the length
scale L, involved in Eq. (1), can be assimilated to the gigascopic
scale, ε could be a small parameter. Several works have been
devoted to the study of the asymptotic behaviour of the system
associated to (1) in the limit ε → 0, see Majda and Souganidis
[8], Clavin and Williams [9], for a comprehensive study. One
possible leading order equation for such a simplified “flame
front model” is the two-dimensional Hamilton–Jacobi equation

∂G

∂t
+ v(x, t) · ∇G = SL‖∇G‖ (2)

In Eq. (2), the level set G = 0 defines the flame front position
and SL is the flame front rate of spread.

Several questions naturally arise: is it necessary to describe
the forest fire propagation by a complete modelling at macro-
scopic level or can a reduced reaction diffusion model, at
macroscopic scale, like (1) captures all the needed features of
a forest fire propagation considered at large scale? Moreover,
is Eq. (2), at gigascopic scale, sufficient for describing the fire
propagation? The aim of this paper is to check and compare
the different types of existing forest fires propagation models
and to complete the previous study of Weber [10,11], attempt-
ing to give a partial answer to the two questions settled above.
The approach will be the following, we will firstly present the
geometrical/empirical models of Rothermel and Drouet and we
will show that the latter “contains” the other. We will show then
that the Drouet model or envelope model relies on a Hamilton–
Jacobi equation similar to Eq. (2). And then we will see that
the “simplest” extension of envelope model compatible with the
Hamilton–Jacobi equation is a reaction–diffusion system.

As just mentioned before different types of models will be
discussed below, but only “continuous models” will be consid-
ered. Then a special attention must be paid to cellular automata
models, cf. Albinet et al. [12], Beer [13], and Weimar and Boon
[14] for a complete description of these models and more re-
cently Zekri et al. [15]. The cellular automata models consist in
modelling the forest as a set of nodes on generally square lat-
tice. The nodes can be in three states unburnt, burning or burnt.
A probabilistic transition law involving the state of the node
and the state of the neighbouring nodes governs the evolution
of the automata. With these kinds of models, which have simple
rules, and give fast computation, one can introduce the inter-
esting concept of percolation. Above a critical density the fire
propagates to infinity, whereas, under this value, the fire will
extinguished. The critical density is an index of danger, which
is a very useful information.

The paper is organised as follows: the second section is de-
voted to the description of the so-called “empirical models”,
namely Rothermel and envelope models. It is shown that these
models are included in a Hamilton–Jacobi equation, so that
they belong to gigascopic scale models. The underlying pos-
sible physical systems of partial differential equations are then
evocated. The third section is dedicated to the presentation of
a simplified anisotropic propagation model with a nonlocal ra-
diative term obtained from a combustion model at macroscopic
scale. In the fourth section, the comparison between this model
and the envelope model is made numerically. Finally, conclu-
sions are drawn in section five.

2. Description of the empirical models

2.1. Rothermel and envelope models

Let us recall briefly the different types of empirical model.
The Rothermel model, see Rothermel [16], relies mainly on

the concept of rate of spread R that is the normal velocity of a
straight fire front. If the fire front position is known at time t ,
the position of a point of the fire front curve that was at position
X at time t is X + Rn dt at time t + dt , where n is the unit
normal vector to the curve. The rate of spread is determined
experimentally and can be expressed as a function of the local
physical parameters. This function is obtained considering three
relations. The first one relates the link between the so-called
total propagating heat flux Ip and the rate of spread

R = Ip

ρbeQig

(3)

where Qib is the heat required to ignite a unit mass of fuel and
ρbe is the effective bulk density, i.e., the amount of fuel per unit
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volume of the fuel bed raised to ignition ahead of the advancing
fire. The second relation is the experimental correlation

Ip0 = Ip0(IR) (4)

between the total propagating heat flux Ip0, without wind and
slope, and the reaction intensity IR which is the product of the
fuel mass loss rate per unit area and the fuel heat content H :

IR = −dm

dt
H (5)

The last relation is an empirical relation that takes into account
the role of wind and slope. It is indeed assumed that the influ-
ence of wind and slope can be handled by two parameters which
have to be measured experimentally. This relation gives the to-
tal propagating heat flux Ip as a function of the same flux Ip0
without wind and slope and has the following form:

Ip = Ip0(1 + φw + φs) (6)

where φw and φs are respectively wind and slope correlation
factors, and are function of the local physical parameters. Once
the empirical relations (4)–(6) are inserted in (3), one obtain the
relation

R = R(σ, δ,C0, ρp,H,V, tanϕ,Mf ,Mx,ST , SE) (7)

where the local physical parameters are given in Table 1.
Let us now go to the so-called envelope models. It is exper-

imentally known, see Peet [17] for example, that a fire ignited
at a point in a uniform forest under the action of wind or slope
can develop as a curve like an ellipse with the great axis aligned
with wind or slope, see Fig. 1. The equations of the ellipse can
be written:{

X̃(t, φ) = t (g + f cosφ)

Ỹ (t, φ) = th sinφ
(8)

The parameters f , g, and h are homogeneous to a velocity
and must be determined experimentally.

Relying on this experimental evidence, independently
Drouet [18] and Anderson et al. [19] have developed the so-
called envelope model that is valid for a nonuniform forest.
Within this description, parameters f , g, and h depend now
on time t , position X, and wind or slope direction k, because
they depend on local physical properties of the forest (as fuel
moisture, heat diffusivities, . . . ), on hydrodynamics of the gas,
and on slope. Between time t and t + dt , all points of the fire
front are source points and the fire front at time t + dt is the
envelope of all these ellipses. Once the parameters have been
fitted, this model produces realistic scenarios of propagation,
see Catchpole et al. [20]. Richards [21] has derived a set of
analytical equations for obtaining directly the position of the
fire front. To get these equations, let us denote the local unit
vector giving the local direction of the wind or of the slope
by k(M, t) = i cos(β(t)) + j sin(β(M, t)), and k⊥(M, t) its or-
thogonal vector (cf. Fig. 2).

Here (i, j) is a global basis. The fire front is the curve de-
noted by Ct , parameterised by θ , and let X(t, θ) = X(t, θ)i +
Y(t, θ)j be the position vector describing this fire front curve. It
can be shown, using the theory of envelopes, see Richards [21],
Table 1
Meaning of local physical parameters involved in relation (7)

σ Surface-area-to-volume ratio of fuel elements (m−1)
δ Vegetal layer depth (m)
C0 Fuel load (kg m−2)
ρp Density of dry particles (kg m−3)
H Fuel heat content (kJ kg−1)
V Wind velocity (m s−1)
tan ϕ Slope
Mf Humidity of fuel particles
Mx Extinction humidity
ST Mass fraction of total minerals in fuel particles
SE Mass fraction of minerals without silica in fuel particles

Fig. 1. Propagation of a point ignited fire.

Fig. 2. Fire front description.

that the system of partial differential equations (PDE) that the
co-ordinates of a point on the fire front has to verify is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂X
∂t

(θ, t) = g(X, t, β) cos(β) + r[pf (X, t, β)2 cos(β(X, t))

+ qh(X, t, β)2 sin(β(X, t))]
∂Y
∂t

(θ, t) = g(X, t, β) sin(β) + r[pf (X, t, β)2 sin(β(X, t))

− qh(X, t, β)2 cos(β(X, t))]
(9)

where the functions p, q , and r are given by⎧⎪⎨
⎪⎩

p(θ, t) = − ∂X
∂θ

sin(β(X, t)) + ∂Y
∂θ

cos(β(X, t))

q(θ, t) = ∂X
∂θ

cos(β(X, t)) + ∂Y
∂θ

sin(β(X, t))

r(θ, t) = [(f (X, t, β)p(θ, t))2 + (h(X, t, β)q(θ, t))2]−1/2

(10)



O. Séro-Guillaume et al. / International Journal of Thermal Sciences 47 (2008) 680–694 683
Eqs. (9) and (10) form a system of nonlinear PDE that must
be solved for determining the fire front position. Note that, for
the particular case of a uniform forest with uniform wind and
slope, we can take (i, j) = (k,k⊥) so that β = 0 and Eqs. (9)–
(10) are simplified. It is then straightforward to verify that
Eq. (8) is solution to Eqs. (9)–(10). That proves the coherence
of the envelope method.

In order to compare this approach with the point of view of
Rothermel, let us determine the rate of spread, i.e., the normal
velocity Ẋ · n of the fire front, where we denote by τ and n the
unitary tangent and normal vectors to Ct and Ẋ = ∂X

∂t
. As

∂X
∂θ

= ρτ , with ρ =
∥∥∥∥∂X

∂θ

∥∥∥∥
by definition of τ , using the vectors k and k⊥, relation (9) can
be written in the intrinsic form

Ẋ = [(
g(X, t,k) + f (X, t,k)2r̄ p̄

)
k − h(X, t,k)2r̄ q̄k⊥]

(11)

with⎧⎨
⎩

p̄(θ, t) = k · n

q̄(θ, t) = k · τ = −k⊥ · n

r̄(θ, t) = [(f (X, t,k)p̄)2 + (h(X, t,k)q̄)2]−1/2

(12)

so that the normal velocity of the fire front takes the simple form

Ẋ · n = g(X, t,k)p̄ + [(
f (X, t,k)p̄

)2 + (
h(X, t,k)q̄

)2]1/2

(13)

We can define the following tensor

C(M, t,k) =
(

f (M, t,k) 0

0 h(M, t,k)

)
(n,τ )

(14)

so that Eq. (13) takes finally the compact form

Ẋ · n = g(X, t,k)k(X, t) · n + ∥∥C(X, t,k) · k(X, t)
∥∥ (15)

Now, if we consider a straight front that propagates in a uniform
forest, n = k so that relation (15) reduces to Ẋ ·n = g(X, t,k)+
f (X, t,k). This proves that the empirical rate of spread R given
by Eq. (7) and empirical parameters g and f are linked by the
relation

R = g + f (16)

The Rothermel model is then structurally include in the enve-
lope method.

2.2. Envelope model and Hamilton–Jacobi equation

We will demonstrate now that envelope model is included
in a Hamilton–Jacobi equation. The link between these two
approaches is the Huygens principle. For chemical waves in re-
active systems the Huygens principle can indeed be applied,
see Sieniutycz and Farkas [22] or Enders [23] for a general de-
scription and we will apply it to forest fires. We can imagine the
propagation of the fire as the propagation of an interaction in an
excited medium. The propagation takes place with the follow-
ing rules:

(i) Every point of the medium can be excited or not (the point
is burning or not).
(ii) Once a point is excited, it becomes the source of an excita-
tion.

We can consider that the velocity c(x,x′) of the propagation of
the excitation in the direction x′ at a point P(x) is given by

c(x,x′) = 1

F(x,x′)
‖x′‖ (17)

where the indicatrix function F(x,x′) must satisfy the three fol-
lowing properties:

(i) F(x,x′) > 0 if x′ �= 0. (18)
(ii) It is a positively homogeneous function of the direction, be-

cause the velocity does not depend on the parameterisation
of the paths, i.e.,

F(x, λx′) = λF(x,x′), ∀λ �= 0 (19)

(iii) We suppose that F(x,x′) is a smooth function of x.

Let us consider an excited point P0. The time taken by the per-
turbation to go to another point P1 at rest, on the path γ̃ is
τ(P0,P1, γ̃ ) = ∫ x1

x0
F(x(γ̃ , s), dx

ds
(γ̃ , s))ds where s is the arc

length along the path and x(γ̃ , s) is the position vector describ-
ing the path γ̃ . As the point P1 will become excited once the
first perturbation has reached it, the real path of the perturba-
tion will be the one for which the time τ is the minimum, that
is

τ(P0,P1) = min
γ̃

τ (P0,P1, γ̃ ) (20)

If the excited domain at time t0 is De(t0), the real time for the
perturbation to attain P1 is

τ(P1) = min
P0∈De(t0)

τ (P0,P1) (21)

This is this Huygens principle that describes the position of the
fire front perturbation.

In order to determine the indicatrix function F(x,x′) related
to the envelope model, let us consider the ellipse due to the
source point P0. In the local system of co-ordinates (X̃, Ỹ ), see
Fig. 1 for notations, the equations for this ellipse are{

X̃(φ,dt) = dt[g(P0, t0) + f (P0, t0) cosφ]
Ỹ (φ,dt) = dt[h(P0, t0) sinφ] (22)

Eliminating the parameter angle φ, we obtain the equation

G

(
X̃

dt
,

Ỹ

dt

)
= 1 (23)

with

G(x′
1, x

′
2) = 1

f 2
(x′

1 − g)2 + 1

h2
x′2

2 (24)

The point which is attained after time dt , in the direction of the
unitary vector x′ = (x′

1, x
′
2), where x′

1 = x′ · k and x′
2 = x′ · k⊥,

has the co-ordinates X̃ = c(x,x′)x′
1 dt and Ỹ = c(x,x′)x′

2 dt , so
that the velocity c(x,x′) satisfies the equation G(cx′

1, cx
′
2) = 1.

As F(x,x′) = 1
c
, the indicatrix function is solution to the equa-

tion

G

(
x′

1 ,
x′

2
)

= 1 (25)

F F
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whose appropriated solution is

F(x,x′) = −B − √
B2 − AC

C
(26)

where⎧⎪⎪⎨
⎪⎪⎩

A = 1
h2 [(h/f )2(x′ · k)2 + (x′ · k⊥)2]

B = − h
f
(g/f )(x′ · k) 1

h

C = (g/f )2 − 1

(27)

Let us now consider the function S(x, t) defined by

S(x, t) = −t + τ(x) (28)

where τ is the minimum time considered in (21). The position
of the fire front is given by the relation

S(x, t) = 0 (29)

The function S is solution to the following Hamilton–Jacobi
equation, see Courant and Hilbert [24],

∂S

∂t
+ H(x,∇S) = 0 (30)

where the function H is the Hamiltonian, defined by the fol-
lowing Legendre transformation:

H(x,p) = sup
x′

〈p,x′〉
‖x′‖F

(31)

with 〈. , .〉 the usual scalar product and ‖x′‖F = F(x,x′).
After some algebra one can find from relations (31) and (26):

H(x,p1,p2) = gp1 +
√

(fp1)2 + (hp2)2 (32)

which is nothing but right-hand size of relation (13), the normal
velocity of the front. This result can indeed be derived directly
from the Hamilton–Jacobi equation. The normal velocity of the
curve defined by (29) is indeed Ẋ · n = − 1

‖∇S‖
∂S
∂t

, so that using
the Hamilton–Jacobi equation (30), we get

Ẋ · n = H(x,∇(S))

‖∇S‖ (33)

Let us recall that p̄ and q̄ are components of the direction of the
wind on the tangent and normal basis of the curve given by (12),
so that ∂S

∂x1
= p̄‖∇S‖ and ∂S

∂x2
= q̄‖∇S‖. Finally, we obtain the

following rate of spread:

Ẋ · n = H(x, p̄‖∇S‖, q̄‖∇S‖)
‖∇S‖ = H(x, p̄, q̄) (34)

because the Hamiltonian is an homogeneous function of order
one in p = (p̄, q̄).

We can conclude that the envelope model is structurally in-
cluded in Hamiltonian modelling, the envelope method being
only a way of solving the Hamilton–Jacobi equation. Note that
Hamilton–Jacobi equation (30) can leads to nonelliptical fire
propagation if we choose another Hamiltonian than the one
given by Eq. (32).

All above empirical models fall, in fact, within the context of
a geometrical description of the fire front, so that they should
be called “empirical/geometrical models” rather than empiri-
cal models. We have obtained so far a pure geometrical model,
with no a priori relations with any physical process. Once the
parameter functions are adjusted, the simulations made with
this model give relatively realistic shapes for the fire front, see
Finney [25]. We will see that the link between this approach
and a physical model can be made via the use of the Hamilton–
Jacobi equation (30). In the particular case when f = h, then
Eq. (30) reduced indeed to

St + gk · ∇S = f ‖∇S‖ (35)

We recover the G equation (2) for a flame front in premixed
flame with v = g k and SL = f . This suggests that models con-
sidered in this section are descriptions of the fire front at very
large scale (gigascopic) and that the leading underlying physi-
cal process is a reaction diffusion system. We will precise this
point in the following Section 2.3.

2.3. Possible relationship of the envelope model with physical
equations

The models considered in the previous section are very at-
tractive because they are two dimensional models that depends
only on three parameters, namely f , g, and h, and they give
very fast computations. These parameters have to be estimated
as functions of physical measurable parameters from real exper-
iments or eventually numerical experiments. When these para-
meters are well chosen, the simulated propagations of the fire
front are realistic for many usual situations. Several questions
remain:

1. What are the main underlying physical processes leading
to Hamilton–Jacobi equation (30)?

2. What is the range of validity of the geometrical/empirical
models described above?

The fire front can indeed be assimilated to a characteristic
surface, say T = cst, of a system of PDE, where the variable T

is a temperature and the constant could be an ignition temper-
ature. It has been indeed shown in [11] that the level curves of
the equation

∂T

∂t
+ A(x) · ∇T = ∇ · ((C2(x)/W(x)

)∇T
) + W(x)T (36)

with

A(x) =
(

g

0

)
, C(x) =

(
f (x) 0

0 h(x)

)
(37)

and W(x) a known reaction source function, can develop as
ellipses from a Dirac point source, provided that the above coef-
ficients are constant. Therefore, reaction–diffusion systems are
good candidates as underlying processes for the propagation of
forest fires at large scale.

It is known however, cf. Courant and Hilbert [24], that the
solution of characteristic surfaces of hyperbolic systems of
equations, satisfies a Hamilton–Jacobi equation too, so that the
underlying physical process could be hyperbolic too. One can
see indeed, cf. [24], that the solutions of the Hamiltonian equa-
tion (30) with Hamiltonian given by relation (32) are, in the
case g = 0, characteristic curves of the equation
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∂2T

∂t2
+ 1

τ

∂T

∂t
= ∇ · (C2∇T ), with C =

(
f (x) 0

0 h(x)

)

(38)

In Eq. (38), the functions f and h are the one involved in the
model of propagation and τ is an unknown relaxation time.

The question now is the status of the “temperature” T in (36)
or/and (38). In general three dimensional combustion models
cited previously, the forest is considered as a stratified medium.
Above the vegetation, the equations for the model are the one
of a multi-constituents gaseous phase with chemical reactions
and radiation heat transfer, and the vegetation has been ho-
mogenised at macroscopic scale and is considered as a porous
multiphasic multi-components medium, i.e. the forest fuel is
a complex medium with two phases at least, namely the solid
vegetation phase and the fluid phase, composed of air and of
gases issued from the vegetation pyrolysis. Then there are two
temperatures, namely Tp for the solid phase and Tf for the
gaseous phase. And the question is to know what temperature
has to be considered in models based on Eq. (36) or (38). And
it is often argued that the equivalent or homogenised medium is
not at thermal equilibrium so that the temperature equations for
the solid and fluid phase are not the same. Then it is neverthe-
less tempting to assume at first approximation that the thermal
equilibrium is reached in forest layer, i.e., Tp = Tf , so that, one
can show, [1], that the energy balance reduces to

(
Φρf C

f
P + (1 − Φ)ρpC

p
P

)∂T

∂t
+ Φρf C

f
P Vf · ∇T

+ ∇ · (λ∇T + Qr ) = Rf c + Rpc (39)

where T = Tp , Φ is the porosity of the porous forest medium,

ρf and C
f
P are the density and heat capacity of the fluid phase,

ρp and C
p
P are the density and heat capacity of the solid porous

phase, Qr is the radiative flux, and Rf c and Rpc are the heat
sources due to chemical reactions in both phases. Finally, Vf is
the velocity of the gas and λ the equivalent conductivity. This
result is in accordance with the study of Moyne et al. [26] on the
modelling of heat transfer in porous media. This equation (39)
looks like the reaction–diffusion equation (36). The discrepancy
between both equations is the isotropy of the conductivity and
the presence of a radiative flux Qr in Eq. (39). Note that if the
forest medium is dense enough the radiative term can reduces
to a diffusion one.

The use of Eq. (39) for simulating forest fires propagation
supposes the knowledge of the velocity Vf of the gas, and then
requires the solving of the related Navier–Stokes equation in-
side the vegetal phase. But, one can realise that the convective
term (Φρf C

f
P Vf · ∇T ) in (39) can be neglected inside the veg-

etation, for two reasons. The first one is that density of gases is
largely smaller than the one of solid phase and that the veloc-
ity of gases is in the range of only some meters per second. The
second reason is that the Reynolds number is at least of 105 and
the flow is turbulent (let us recall that Φ ≈ 0.9), then once it
is averaged in time the convective term (Φρf C

f
P Vf · ∇T ) con-

tributes to diffusion more than to convection, see for example
the paper by Fannjiang and Papanicolaou [27]. At the end of this
section we are in position to assert that the temperature of the
solid phase is the relevant parameter for describing the propaga-
tion. However, as we will see in the next section, it is important
to deal with the developed flames above the vegetation when we
consider the reduction to two-dimensional propagation model.
The role of the velocity of the gas above the vegetation is im-
portant because it influences the direction of the flame and then
radiation.

3. Physical system for forest fires propagation

The system of reaction diffusion equations dedicated to the
simulation of forest fires propagation could be set “a priori” cf.
Weber [10] or derived from a system of equations describing the
fires at smaller scale, i.e., at macroscopic scale. In this section,
for sake of completeness we will recall, see [28], the derivation
of this system.

3.1. A two-dimensional reaction diffusion system for forest fire
propagation

The detailed combustion model, from which the propagation
model is derived is the one developed in [1], and we refer to this
paper for the details of notations and derivations. Let us recall
some notations introduced in the preceding section. The forest
is considered as a porous medium of porosity Φ , composed of
a vegetal phase with index p and a fluid gaseous phase with
index f . The vegetal phase is itself composed of different con-
stituents; for sake of simplicity only water (liquid or gaseous),
cellulose, char, and flammable gas due to pyrolysis, are consid-
ered; Tp is the temperature of the vegetal phase and Tf is the
temperature of the gaseous phase.

Let us consider that the mean height scale of the vegetal stra-
tum is δ, and we suppose that the height of flame is of the same
magnitude. We can consider now a gigascopic scale L associ-
ated to a developed fire or corresponding to a distance from the
flames front such that the ratio ε = δ/L is a small parameter,
say ε � 1. At scale L, the vegetation appears as a boundary
layer and the fire can be considered as spreading on a surface.
We consider an asymptotic expansion with ε as small para-
meter in order to derive the model, which corresponds to the
inner expansion, in the sense of matched asymptotic expansion.
The obtained model is complex but we retain only the part cor-
responding to the energy and mass balances equations of the
vegetal:

(1 − Φ)ρpC
p
P

∂Tp

∂t
= ∇S · (λp∇STp)

− ∇S · Qrp + Rcp + χ(Tf − Tp) + Mr (40)
∂

∂t

(
(1 − Φ)(1 − εp)Sawp

)
= −(1 − Φ)(1 − εp)Sawpkwpcp (Tp) (41)

∂

∂t

(
(1 − Φ)(1 − εp)Sacpρcp

)
= (1 − Φ)(1 − εp)Sawpρwpkwpcp (Tp) (42)

∂

∂t

(
(1 − Φ)εpSalp

)
= −(1 − Φ)εpSalpklpvgp (Tp) (43)
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with

C
p
P = (1 − εp)

(
Sawp

ρwp

ρp

CPwp
+ Sacp

ρcp

ρp

CPcp

)

+ εp

(
Salp

ρlp

ρp

CPlp

)

and the heat source Rcp a known function of temperature
Tp,∇S is a surfacic operator set on the surface of propagation
and λp is the conductivity of the vegetal phase, the different
terms Saj represent the saturation of different components of
the vegetal medium, and εp is the proper porosity of the vege-
tal phase. In Eq. (40), which represents balance of energy of the
solid phase, the term Rcp is the heat source due to evaporation
and pyrolysis, the term −∇S · Qrp is the heat source due to the
solid phase combustion, and the term χ(Tf − Tp) is the heat
flow convection term due to interaction of the vegetation with
the ambient gas at temperature Tf , and Mr is the radiative heat
source coming from the flames. Index wp is for the wood con-
stituent who is subject to pyrolysis, cp is for char constituent
of wood, while the index lp is for the liquid phase in the wood,
the terms kwpcp and klpvgp are associated to the pyrolysis and
drying.

All the preceding equations (40)–(43) are part of the equa-
tions of the boundary layer produces by the fire. The solution of
the complete system of equations should be matched to the so-
lution of the outer expansion, i.e., to equations above the forest
fire layer, for determining the radiative heat source Mr coming
from the flames and the gaseous temperature field Tf .

3.2. Derivation of a simplified two-dimensional anisotropic
propagation model with nonlocal radiative term

Let us consider a simplified version of the preceding model.
The first approximation that we can do is to suppose that
evaporation is at constant temperature Tev , which simplifies
Eq. (43), and neglect the heat absorbed by solid during pyrol-
ysis. A cruder approximation is to neglect the radiative heat
transfer −∇S · Qrp into the forest layer and the char residue
(Eq. (42)) so that Eq. (40) reduces to

(1 − Φ)ρp(Cs + HuCl)
∂T

∂t
= ∇ · (λ∇T ) + h(Ta − T )

+ (1 − Φ)ρp

∂Hu

∂t
LevδT =Tev + Mr (44)

In this relation, we have suppressed the indices of operators and
of temperature, Hu is the humidity the symbol δT =Tev stands for
the Dirac distribution of the zone T = Tev and Mr is the total
radiative flux coming from the flame. Moreover, Cp = Cs +
HuCl with Cs is the heat capacity of the solid constituent of
vegetation, Cl is the heat capacity of the water, h is the heat
loss coefficient, Ta is the temperature of the gaseous ambient
phase, and Lev is an evaporation latent heat.

Now the simplification can be summed up as follows:

(i) In the zone before the evaporation front, denoted by zone I,
such that T < Tev and ρp > ρext,
(1 − Φ)ρp(Cs + Hu0Cl)
∂T

∂t

= ∇ · (λ∇T ) + Mr − h(T − Ta) (45)

where Hu0 is the initial humidity and ρext the extinction
vegetation density.

(ii) In the evaporation zone, denoted by zone II, such that T =
Tev , Hu > 0 and ρp � ρext,

−(1 − Φ)ρpLev

∂Hu

∂t
= Mr − h(Tev − Ta) (46)

(iii) In the intermediary zone between the evaporation zone and
the burning zone, denoted by zone III, such that Tev < T <

Ti , Hu = 0 and ρp � ρext,

(1 − Φ)ρpCs

∂T

∂t
= ∇ · (λ∇T ) + Mr − h(T − Ta) (47)

with Ti the ignition temperature.
(iv) In the burning zone, denoted by zone IV, such that T � Ti ,

Hu = 0 and ρp � ρext,

(1 − Φ)ρpCs

∂T

∂t
= ∇ · (λ∇T ) + Mr − h(T − Ta) (48)

the variation of mass due to chemical reactions is:

∂ρp

∂t
= −vrρp (49)

where vr characterizes the speed of the chemical reaction,
one can consider an Arrhenius law

vr = A exp(−E/RT ) (50)

(v) In the burnt zone, denoted by zone V, such that ρp = ρext

(1 − Φ)ρextCs

∂T

∂t
= ∇ · (λ∇T ) + Mr − h(T − Ta) (51)

3.3. Simplified radiative flame model

As it has been noted at the end of Section 3.2, the preceding
model (45)–(51) corresponds to an inner expansion while the
radiative flux term Mr can only be calculated from the solution
of the outer expansion. As this is not the aim of this paper to pre-
cise this expansion, and for illustration, we consider a simplified
flame model that introduces nonlocal effects due to radiation.

The vegetation is supposed to be very thin and set on a plane
Sf . The flame is supposed to be at constant known temperature
Tf and each flame element is supposed to be directed by a unit
vector F, the emitting point is denoted by P and the receiving
point by M, O is the flame foot (cf. Fig. 3). The global basis is
denoted by (e1, e2, e3), e3 being the vertical direction. The vec-
tor n is the unit normal to the upper plane (i.e. unit normal to the
receiving surface) of the vegetation at M. The angle between F
and the vertical is denoted by αf = (e3,F). The flame elements
are supposed to have a length lf . If the fire front is supposed to
be thin, one can show that the radiative heat flux is given by the
double integral calculated on the burning zone denoted by Sf :

Mr = Kf

BT 4
f

π



O. Séro-Guillaume et al. / International Journal of Thermal Sciences 47 (2008) 680–694 687
Fig. 3. Radiation of the flame.

×
∫
Sf

(F(1 − cos θfm) − w(cosβ − cos(β + θfm)) · n

r sin2 β
dx dy

(52)

with, cf. Appendix A for notation and derivation, r being the
distance between the foot flame and the receiving points, and
Kf the absorption coefficient of the flame,

cosβ = F · OM
r

= F · w (53)

w is the unit vector such that OM = rw.

cot θfm = − cotβ + r

lf sinβ
(54)

The velocity of the gas is decomposed as follows Vf l = vg +V,
with⎧⎪⎨
⎪⎩

vg = Vge3

V = Vg(cosϕvk + sinϕvk⊥)

Vt
f l = Vf l − (Vf l · e3)e3

(55)
4. Numerical comparison of models

We are now in position of comparing the anisotropic prop-
agation model with a nonlocal radiative term, given at Sec-
tions 3.2. and 3.3. Eqs. (45)–(55), with the envelope model. We
consider a uniform forest. Typically the following values have
been considered for the physical parameters of the model, given
in Table 2, with A = 5 × 103 s−1, E = 1.398 × 105 J mole−1,
Φ = 0.9, ρext = 0, and R = 8.314 J mole−1 K−1.

As mentioned before at the end of Section 2, the convective
term through the forest gives rise to diffusion at large scale so
that the equivalent heat diffusivity λ value of the forest is differ-
ent from the conductivity of the vegetation. This value should
then be estimated by inverse method from fire tunnel experi-
ments or numerical sub grid simulations. The precise study of
the influence of the heat diffusivity on the fire front spread is
beyond the scope of this paper. Nevertheless, Chetehouna et
al. [29] have shown that the rate of spread can be computed
by a regular perturbation expansion in the diffusion. Then the
diffusion contribution is small regarding radiative heat flux con-
tribution so that we will consider that the heat diffusivity λ is
null at first approximation. This is nevertheless the nonlocal ra-
diative term that will play the role of anisotropic and convective
terms.

The calculations of model equations (45)–(55) have been
made with a finite volume method in a domain of 10 × 10 m2,
the grid mesh sizes are 0.5 m, 0.25 m, 0.1 m, and the time step
is 1.0 s.

Table 2
Parameters model value

Cs = 2400 J kg−1 K−1 Cl = 4180 J kg−1 K−1

δ = 1 m K = 0.2 m−1

h = 20 J m−2 s−1 K−1 Lev = 2.250 × 106 J kg−1

Ta = 300 K Tev = 373 K
hf = 1 m Tf = 1200 K
Fig. 4. Rate of spread versus slope and wind for the anisotropic propagation model with nonlocal radiative term.
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Fig. 5. Fire fronts at successive times for different slopes and winds. The ignition point is at (x, y) = (100 m,100 m).
4.1. Straight line propagation

With the above physical values, one obtains the behaviour
of Fig. 4 for the rate of spread, considering a straight line igni-
tion.

This rate of spread is measured at the middle of the fire front
when the stationary propagation is attained. The rate of spread
values seem realistic, compared to experimental results given
in Mendes-Lopes et al. [30] and Santoni et al. [31], for fires
of small intensities on pine needles litters. Recall that, accord-
ing to Eq. (16), the straight line rate of spread of the envelope
method is given by the sum f + g so that our model permits to
determine this summation spread.
4.2. Point ignition

We have seen in the preceding Section 4.1 that the rate of
spread given by the model can be compared favourably to ex-
perimental results for a straight fire front. In order to see if this
anisotropic propagation model with nonlocal radiative term can
contain the geometrical models presented in Section 2, it is nec-
essary to show that a fire ignited at a point will develop an
elliptical fire front.

On Figs. 5, we have plotted firstly the shape of the fire front
with no slope and no wind, as foreseen the fire front is a circle.
The transient time depends on the ignition process, which is
supposed to approximate a Dirac δ function. On the right part
of the figure, the radius of the circle is plotted versus time, one
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Fig. 6. Variations of the ellipse parameters with time and of the relative error. Slope 0◦, wind 0 m s−1 mesh 0.1 m and 0.5 m.

Fig. 7. Variations of the ellipse parameters with time and of the relative error. No slope, wind 0.60 m s−1.
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Fig. 8. Variations of the ellipse parameters with time and of the relative error. Slope 20◦ , no wind.
can see that the propagation is not immediately stationary and
becomes stationary only after some times. On the other parts
of the figures we have plotted the fire front curve at different
time steps for two different slopes and winds that are directed
along y axis. One can recognize that the fire line seems to be an
ellipse. In order to compare, the fire lines have been fitted with
the best possible ellipse:

(x − x0)
2

a2
+ (y − y0)

2

b2
− 1 = 0 (56)

The best ellipse has been determined solving the minimum
problem:

min
x0,y0
a,b

�S with �S =
∫

R2

|χcal − χell|dx dy (57)

In relation (53), χcal, χell are the characteristic functions of re-
spectively the burning and burnt zones, calculated by the model
(45)–(55), and of the fitting ellipse so that �S is the area of
the difference surface between the two zones. The optimisation
problems are solved at each time steps using a genetic like algo-
rithm. The fitting has been realised once the stationary state has
been reached, that is why the curves have equation of the form
ut + v and do not go through the point (0,0). The discontinu-
ous aspect of the curve is due to the fact that at each time step
not all the cells in the neighbour of the fire commute into the
burning state exactly at the same time. This effect is diminished
if the time step and mesh size are decreased.

In order to see the dependency of the results on mesh size,
let us consider a mesh of 0.1 m, for a no wind and no slope case,
see Fig. 6.

One can see that the results obtained are very close to the
preceding ones, that is why computations have been made with
the coarser mesh and time step.

Considering the relative error one can notice that the fire
fronts are close to ellipses for all time steps and that the pa-
rameters x0, y0, a, and b vary linearly with time. This result is
consistent with relations (8) of the envelope model. Indeed, by
identifying Eqs. (8) and (11), we get a = ht , b = f t , y0 = gt ,
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Fig. 9. Variations of the ellipse parameters with time and of the relative error. Slope 5◦, wind 3 m s−1.
and x0 = 0. The measured rate of spread is exactly 0.049 which
is the value of f + g. This equality has been verified for all
computations.

Some results are given in the following Figs. 7 to 9. In order
to determine the accuracy of fitting the fire front by an ellipse,
the relative error �S

Scal
(t) has been plotted, Scal being the surface

of the calculated burning zone.
The first point to notice is that once the stationary state has

been reached the variations of the coefficients are linear with
time as expected, see relation (8). So that one can conclude that
the anisotropic propagation model with nonlocal radiative term
(NLRT) (45)–(55) presented here contains the envelope model.
The second point is that although the relative error is an increas-
ing function of time, the approximation of the fire front by an
ellipse remains valid on a large range of time, this is due partly
to the fact that the rate of spread is generally low (some cen-
timetres/seconds to several tens centimetres/seconds). The third
point is that the rates of spread obtained for the straight line ig-
nition and the point ignition are consistent (results of Fig. 4).
The development of a numerical scheme for the model in-
cluding diffusion is beyond the scope of this paper, because of
the presence of several free boundaries and will be the scope of
a different paper.

4.3. General curve line forest fire front

So far we have obtained that the anisotropic propagation
with nonlocal radiative term model (NLRT) contains the en-
velope model and we have derived the corresponding values for
the f , g, and h parameters from the point ignition simulation
of the NLRT model. We will use these values for computing
the envelope model and compare these results with the NLRT
model for other ignition lines. It is now interesting to see cases
when the present model and the envelope model give different
results. The envelope model relies indeed on two implicit hy-
potheses:

• The propagation is stationary.
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Fig. 10. Comparison of propagation for reaction model and envelope model for
a sinus ignition line.

• The rate of spread depends only on local values of the pa-
rameters.

As we have noticed in the preceding paragraph the validity of
the first hypothesis depends on the time needed for attaining
the stationary propagation. After ignition, the rate of spread is
an increasing function of time and reaches its maximum and
stationary value after several hundred seconds for straight line
ignition with parameters considered in the previous subsec-
tion 4.2. Therefore the envelope model will over estimate the
propagation rate during the nonstationary phase. The second
hypothesis can be questioned if for example different parts of
the fire front can interact, due to the nonlocality of the radiative
flux.

And in fact if different parts of the fire front interact then the
process is not stationary.

In order to see this effect, let us ignite the fire with a sinus
line and compare the propagation obtained by both models.

For the propagation in Fig. 10 there is no slope and no wind,
so that f = h and g = 0 for the envelope model. The parame-
ters for the envelope model have been measured on a straight
line ignition after 200 seconds of the simulation of the NLRT
model. A sinus arch after the transient time has been propagated
by both models and the fire lines are plotted on Fig. 10. Let us
notice that the shape of the fire front is very similar in the centre
(x between 8 and 18 m) but becomes different near the bound-
aries of the calculation domain. This is due to the fact that the
rate of spread along the line obtained by the NLRT model is
different from the envelope model because of the boundary ef-
fect, i.e., a combination of fire front curvature and nonlocality
of the radiative flux. Points near the boundary receive less ra-
diative flux than the points in the centre leading to a lower rate
of spread. That tends to steepen the fire line.

The line ignition in Fig. 10 has only one concave arch. We
can now consider a “complete” sinus with two concave arches
Fig. 11. Propagation with a two arches line ignition, no slope and no wind.

and a convex one, and we do again the same experiment, the
results are plotted in Fig. 11.

The flux in the reaction model is dispersed in the concave re-
gion therefore the rate of spread is decreased. It is concentrated
in the convex region then the rate of spread is increased so that
the central part of the curve tends to a line. On the other hand,
the envelope model tends to steepen the slope of the front and
develops a spurious caustic once the radius of fire front curva-
ture in the convex region is too small. Here again we can notice
that the discrepancy between both models appears after a rela-
tively long time, this is again due to the low value of the rate of
spread.

5. Conclusion

We have seen that Rothermel model is included in the en-
velope model and that the simplest extension of the envelope
model is a reaction diffusion models. We have explored nu-
merically the influence of the nonlocal radiative heat source
on propagation. Although the diffusivity has not taken into ac-
count we have seen that the reaction model gives good results
comparing the obtained rate of spread to experimental results
and can be considered as an extension of the envelope model.
Other simulations, not reported here, have shown that this re-
sult is insensitive to the type of considered flame model provide
the flame model has a physically relevant dependency upon
slope, wind and distance. The numerical solving of the model
is somewhat complicated because of the presence of several
free boundaries and the exposure of the numerical algorithm,
with or without diffusivity will be considered in a separate pa-
per. Indeed the question of the meaning and the value of the
heat diffusivity has been partly addressed. It is mostly probable
that diffusivity is not only the result of heat conduction at small
scales, but that some “turbulent” diffusivity must be considered
due to the average of heat transport processes at large scales.

The type of models presented here can be calibrated to give
relevant results relatively to the rate of spread and of to the fire
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front shape, the computation time is ten to one hundred faster
than real time, depending of the power of the computer. There-
fore it seems that they are good candidates for the physical
modelling of small to moderate intensity forest fires at large
scales and for real time applications. They can be used in situ-
ation where the envelope method cannot produce correct sim-
ulation of propagation. In some way, they represent one of the
simplest extensions of Rothermel and envelope model. As for
Rothermel model, they could be improved being calibrated with
a large panel of experiments. For example, here, the characteris-
tics of the flame (temperature, height, . . . ) have been considered
as independent of the mass loss due to pyrolysis. It could be
supposed that, as in pool fire, see Drysdale [32] for example, the
law giving the flame parameters is function of the mass loss and
this law could be obtained experimentally. Of course, parabolic
reaction diffusion models, if they are confirmed as large scale
forest fires propagation models, have a limited range of valid-
ity. The one presented have been obtained as a simplified part
of the inner expansion of a porous medium combustion model.
Most probably the convective heating is not well modelled and
will be improved in the future.

Appendix A

Let us now derive relation (52).
We will assume that the flame and the vegetation are grey

medium with constant absorption coefficients Kf , Kv .
Then if the temperature Tf of the flame is constant the inte-

gration of the radiative transfer equation gives for the intensity

i(s) = BT 4
f

π

(
1 − e−Kf (s2−s1)

)
e−Kv(s−s3)

+ Kv

s∫
s3

ib(s̄)e
−Kv(s−s̄) ds̄ (A.1)

with B = n2σ,σ being the Boltzmann constant and n the opti-
cal indice of the medium.

If the flame is assumed thin (1 − e−Kf (s2−s1)) ≈ Kf (s2 −
s1) = Kf

∫ s2
s1

ds̄ and the preceding relation becomes:

i(s) = Kf

BT 4
f

π
e−Kv(s−s3)

s2∫
s1

ds̄ + Kv

s∫
s3

ib(s̄)e
−Kv(s−s̄) ds̄

(A.2)

Then the radiative flux density received by a surface with nor-
mal ni is:

qr (M) · ni = Kf

BT 4
f

π

∫
Ωf

e−KvaM

PM2
u · ni dΩ(P)

+ Kv

BT 4
v

π

∫
e−KvAM

AM2
u · ni dΩ(P) (A.3)
Ωv
Fig. A.1.

Fig. A.2.

Where Ωf is the domain occupied by the flame and Ωv is the
domain occupied by the vegetation. In the limit δ → 0 the right-
hand side of (A.2) reduces to:

qr (M) · n = Kf

BT 4
f

π

∫
Ωf

1

PM2
u · n dΩ(P) (A.4)

This triple integral can be reduced to a double integral. Let us
consider that each element of flames is directed by a unit vector
F, n is the unit vector normal to the plane �v which is the top of
vegetation at the receiving point M . If we consider an absolute
co-ordinate system (O, e1, e2, e3) (not drawn on figure above),
we define the following angles:

(e3,F) = αf , (F,OM) = β (A.5)

The emitting point on the flame is the point P, the point O is the
flame foot, and we consider the radial co-ordinate r , such that

‖PM‖ = ρ, OP = ξF, and OM = rw.

Then PM = OM − OP = rw − ξF, and u · n = 1
ρ
(rw · n − ξF ·

n).
In the triple integral of the right-hand side of (A.3) we in-

tegrate first along the flame, with the previous notations, we
obtain:

Mr = −qr (M) · n

= −Kf

BT 4
f

π

∫
Sf

dxdy

cosαf

lf∫
0

1

ρ3
(rw · n − ξF · n)dξ (A.6)

In (A.6) Sf is the burning surface and lf the local flame length.

The simple integrals
∫ lf ξ

3 dξ and
∫ lf r

3 dξ can be evaluated.
0 ρ 0 ρ
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Let us consider the triangle OPM and the different angles in this
triangle cf. Fig. A.2.

Then we have the following relations:

ρ

sinβ
= r

sinα
= ξ

sin θ
with α + β + θ = π. (A.7)

Then θ can be used as parameter. The derivation of (A.6) gives:

dξ = r
sinβ

sin2(β + θ)
dθ = r

sinβ

sin2 α
dθ (A.8)

Then:

I1 =
lf∫

0

r

ρ3
dξ = 1

r sin2 β

θfm∫
0

sin(β + θ)dθ

= 1

r sin2 β

(
cosβ − cos(β + θfm)

)
(A.9)

I2 =
lf∫

0

ξ

ρ3
dξ

= 1

r sin2 β

θfm∫
0

sin θ dθ = 1

r sin2 β
(1 − cos θfm) (A.10)

Once (A.8) and (A.9) are put in the integral on obtains:

Mr = Kf

BT 4
f

π

×
∫
Sf

(F(1 − cos θfm) − w(cosβ − cos(β + θfm)) · n

r sin2 β
dx dy

(A.11)

With θfm and β solutions to the equations:

cosβ = F · OM
r

, cot θfm = r

lf sinβ
− cotβ (A.12)
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